
A Formal Specification of the Cardano Ledger
(git revision 1.1-486-g301fede)

Jared Corduan
jared.corduan@iohk.io

Polina Vinogradova
polina.vinogradova@iohk.io

Matthias Güdemann
matthias.gudemann@iohk.io

February 20, 2019

Abstract

This documents defines the rules for extending a ledger with transactions. The transac-
tions will affect both UTxO and stake delegation. It is intended to serve as the specification
for random generators of transactions which adhere to the rules presented here.

List of Contributors

Nicolás Arqueros, Nicholas Clarke, Duncan Coutts, Ruslan Dudin, Sebastien Guillemot, Vincent
Hanquez, Ru Horlick, Michael Hueschen, Philipp Kant, Jean-Christophe Mincke, Damian
Nadales, Nicolas Di Prima.

Contents

1 Introduction 4

2 Notation 5

3 Cryptographic primitives 6

4 Addresses 7

5 Protocol Parameters 8

6 Transactions 10

7 UTxO 12
7.1 UTxO Transitions . 12
7.2 Deposits and Refunds . 17
7.3 Witnesses . 20

8 Delegation 22
8.1 Delegation Definitions . 22
8.2 Delegation Transitions . 24
8.3 Delegation Rules . 26
8.4 Stake Pool Rules . 28
8.5 Delegation and Pool Combined Rules . 30

9 Ledger State Transition 33

1

10 Rewards and the Epoch Boundary 35
10.1 Overview of the Reward Calculation . 35
10.2 Helper Functions . 35
10.3 Stake Distribution Calculation . 36
10.4 Snapshot Transition . 39
10.5 Pool Reaping Transition . 41
10.6 Protocol Parameter Update Transition . 43
10.7 Complete Epoch Boundary Transition . 45
10.8 Rewards Distribution Calculation . 47
10.9 Reward Transition . 52

11 Properties 56
11.1 Validity of a Ledger State . 56
11.2 Ledger Properties . 56
11.3 Ledger State Properties for Delegation Transitions 58
11.4 Ledger State Properties for Staking Pool Transitions 59
11.5 Properties of Numerical Calculations . 60

12 Non-Integral Calculations 62
12.1 Types of Non-Integral Calculations . 62
12.2 Implementation of Non-Integer Calculations . 62

12.2.1 Function Simplification . 62
12.2.2 Properties of Function Approximation . 63

A Proofs 64

References 65

List of Figures

1 Non-standard map operators . 5
2 Cryptographic definitions . 6
3 Definitions used in Addresses . 7
4 Definitions used in Protocol Parameters . 9
5 Definitions used in the UTxO transition system . 11
6 Functions used in UTxO rules . 13
7 UTxO transition-system types . 14
8 UTxO inference rules . 16
9 Functions used in Deposits - Refunds . 18
10 Functions used in Deposits - Decay . 19
11 Functions used in witness rule . 20
12 UTxO with witness transition-system types . 20
13 UTxO with witnesses inference rules . 21
14 Delegation Definitions . 23
15 Delegation Transitions . 25
16 Delegation Inference Rules . 27
17 Pool Inference Rule . 29
18 Delegation and Pool Combined Transition Type 30
19 Delegation and Pool Combined Transition Rules 31
20 Delegation sequence transition type . 31
21 Delegation sequence rules . 32
22 Ledger transition-system types . 33

2

23 Ledger inference rule . 34
24 Helper Functions used in Rewards and Epoch Boundary 36
25 Epoch definitions . 37
26 Stake Distribution Function . 38
27 Snapshot transition-system types . 39
28 Snapshot Inference Rule . 40
29 Pool Reap Transition . 41
30 Pool Reap Inference Rule . 42
31 New Proto Param transition-system types . 43
32 New Proto Param Inference Rule . 44
33 Epoch transition-system types . 45
34 Epoch Inference Rule . 46
35 Functions used in the Reward Calculation . 48
36 Functions used in the Reward Splitting . 49
37 The Reward Calculation . 51
38 Rewards transition-system types . 52
39 Preservation of Value . 53
40 Rewards inference rules . 55
41 Definitions and Functions for Valid Ledger State 56
42 Definitions and Functions for Stake Delegation in Ledger States 58

3

1 Introduction

This document is a formal specification of the functionality of the ledger on the blockchain.
The blockchain layer of the protocol and the interaction between the ledger and the blockchain
layer is presented in a separate document, see Formal Methods Team (TODO). The details of
the background and the larger context for the design decisions formalized in this document are
presented in Kant et al. (2018)

In this work, we present important properties any implementation of the ledger must have.
Specifically, we model the following aspects of the functionality of the ledger on the blockchain:

Preservation of value Every coin in the system is accounted for, and the total amount is un-
changed by every transaction and epoch change. In particular, every coin is accounted for
by one of the following categories:

• Circulation (UTxO)

• Deposit pot

• Fee pot

• Reserves (monetary expansion)

• Rewards (account addresses)

• Reward pot (undistributed)

• Treasury

Witnesses Authentication of parts of the transaction data by means of cryptographic entities
(such as signatures and private keys) contained in these transactions.

Delegation Validity of delegation certificates, which delegate block-signing rights.

Stake Staking rights associated to an address.

While the blockchain protocol is a reactive system driven by the arrival of blocks causing
updates to the ledger, the formal description is a collection of rules which is a static description
of what a valid ledger is. The specifics of the semantics we use to define and apply the rules we
present in this document are explained in detail in Formal Methods Team (2018). A valid ledger
state can only reached by applying a sequence of inference rules, and any valid ledger state is
reachable by applying some sequence of these rules.

The structure of the rules we give here is such that their application is deterministic. That is,
given a specific initial state and relevant environmental constants, there is no ambiguity about
which rule should be applied at any given time (i.e. which state transition is allowed take place).
This is an important property which reflects the reality of the implementation — the blockchain
evolves in a particular way given some user activity and the passage of time, and its behaviour
is never unexpected.

4

2 Notation

The transition system is explained in Formal Methods Team (2018).

Powerset Given a set X, P X is the set of all the subsets of X.

Sequences Given a set X, X∗ is the set of sequences having elements taken from X. The empty
sequence is denoted by ε, and given a sequence Λ, Λ; x is the sequence that results from
appending x ∈ X to Λ.

Functions A→ B denotes a total function from A to B. Given a function f we write f a for the
application of f to argument a.

Inverse Image Given a function f : A→ B and b ∈ B, we write f−1 b for the inverse image of
f at b, which is defined by {a | f a = b}.

Maps and partial functions A 7→ B denotes a partial function from A to B, which can be seen
as a map (dictionary) with keys in A and values in B. Given a map m ∈ A 7→ B, notation
a 7→ b ∈ m is equivalent to m a = b.

Map Operations Figure 1 describes some non-standard map operations.

Relations A relation on A× B is a subset of A× B. Both maps and functions can be thought
of as relations. A function f : A → B is a relation consisting of pairs (a, f (a)) such that
a ∈ A. A map m : A 7→ B is a relation consisting of pairs (a, b) such that a 7→ b ∈ m. Given
a relation R on A× B, we define the inverse relation R−1 to be all pairs (b, a) such that
(a, b) ∈ R. Similarly, given a function f : A→ B we define inverse relation f−1 to consist
of all pairs (f (a), a). Finally, given two relations R ⊆ A× B and S ⊆ B× C, we define the
compostion R ◦ S to be all pairs (a, c) such that (a, b) ∈ R and (b, c) ∈ S for some b ∈ B.

In Figure 1, we specify the notation we use in the rest of the document.

set � map = {k 7→ v | k 7→ v ∈ map, k ∈ set} domain restriction
set /� map = {k 7→ v | k 7→ v ∈ map, k /∈ set} domain exclusion
map � set = {k 7→ v | k 7→ v ∈ map, v ∈ set} range restriction
map /� set = {k 7→ v | k 7→ v ∈ map, v /∈ set} range exclusion

A4B = (A \ B) ∪ (B \ A) symmetric difference
M ∪−→ N = (dom N /� M) ∪ N union override right

M ∪←− N = M ∪ (dom M /� N) union override left

M ∪+ N = (M4N) ∪ {k 7→ v1 + v2 | k 7→ v1 ∈ M ∧ k 7→ v2 ∈ N} union override plus
(for monoidal values)

Figure 1: Non-standard map operators

5

3 Cryptographic primitives

figure 2 introduces the cryptographic abstractions used in this document. we begin by listing
the abstract types, which are meant to represent the corresponding concepts in cryptography.
Only the functionality explicitly stated in the figures below is assumed within the scope of this
paper. That is, their exact implementation remains open to interpretation, and we do not rely on
any additional properties derived from the study or implementation of public key cryptography
outside this work. The types and rules we give here are needed in order to guarantee certain
security properties of the delegation process, which we discuss later.

The cryptographic concepts required for the formal definition of witnessing include public-
private key pairs, one-way functions and signatures. The constraint we introduce states that
a signature of some data signed with a (private) key is only correct whenever we can verify it
using the corresponding public key.

Besides basic cryptographic abstractions, we also make use of some abstract data storage
properties in this document in order to build necessary definitions and make judgement calls
about them.

Abstract data types in this paper are essentially placeholders with names indicating the
data types they are meant to represent in an implementation. Derived types are made up of
data structures (i.e. products, lists, finite maps, etc.) built from abstract types. The underlying
structure of a data type is implementation-dependent, and furthermore, the way the data is
stored on physical storage can vary as well.

Serialization is a physical manifestation of data on a given storage device. In this document,
the properties and rules we state involving serialization are assumed to hold true independently
of the storage medium and style of data organization chosen for an implementation.

Abstract types
sk ∈ SKey private signing key
vk ∈ VKey public verifying key
hk ∈ HashKey hash of a key
σ ∈ Sig signature
d ∈ Data data

Derived types
(sk, vk) ∈ KeyPair signing-verifying key pairs

Abstract functions

hashKey ∈ VKey→ HashKey hashKey function
verify ∈ P (VKey×Data× Sig) verification relation

sign ∈ SKey→ Data→ Sig signing function

Constraints

∀(sk, vk) ∈ KeyPair, d ∈ Data, σ ∈ Sig · sign sk d = σ =⇒ verify vk d σ

Notation for serialized and verified data

JxK serialised representation of x
VvkJdKσ = verify vk d σ shorthand notation for verify

Figure 2: Cryptographic definitions

6

4 Addresses

Addresses are described in section 4.2 of the delegation design document Kant et al. (2018). The
types needed for the addresses are defined in Figure 3. There are three types of UTxO addresses:

• Base addresses, Addrbase, containing the hash of a payment key and the hash of a staking
key,

• Pointer addresses, Addrptr, containing the hash of a payment key and a pointer to a stake
key registration certificate,

• Enterprise addresses, Addrenterprise, containing only the hash of a payment key (and which
have no staking rights).

Together, these three address types make up the Addr type, which will be used in transaction
outputs in Section 7.

Note that for security, privacy, and usability reasons, the staking (delegating) key pair
associated with an address should be different from its payment key pair. Before the stake key is
registered and delegated to an existing stake pool, the payment key can be used for transactions,
though it will not receive rewards from staking. Once a stake key is registered, the shorter
pointer addresses can generated.

Finally, there is an account style address Addrrwd which contains the hash of a staking key.
These account addresses will only be used for receiving rewards from the proof of stake leader
election. Apendix A of Kant et al. (2018) explains this design choice. The mechanism for trans-
ferring rewards from these accounts will be explained in Section 7, and follows Zahnentferner
(2018).

Abstract types
slot ∈ Slot absolute slot

ix ∈ Ix index

Derived types

(s, t, c) ∈ Ptr = Slot× Ix× Ix certificate pointer
addr ∈ Addrbase = HashKeypay ×HashKeystake base address
addr ∈ Addrptr = HashKeypay × Ptr pointer address
addr ∈ Addrenterprise = HashKeypay enterprise address
addr ∈ Addr = Addrbase] Addrptr] Addrenterprise output address
acct ∈ Addrrwd = HashKeystake reward account

Accessor Functions

paymentHK ∈ Addr→ HashKeypay hash of payment key from addr
stakeHKb ∈ Addrbase → HashKeystake hash of stake key from base addr
stakeHKr ∈ Addrrwd → HashKeystake hash of stake key from reward account

addrPtr ∈ Addrptr → Ptr pointer from pointer addr

Constructor Functions

addrrwd ∈ HashKeystake → Addrrwd construct a reward account

Figure 3: Definitions used in Addresses

7

5 Protocol Parameters

The rules for the ledger depend on several parameters and are contained in the PParams type
defined in Figure 4.

The type Coin is defined as an alias for the integers. Negative values will not be allowed in
UTxO outputs or reward accounts, and Z is only chosen over N for its additive inverses.

The minfee function calculates the minimum fee that must be paid by a transaction. This
value depends on the protocol parameters and the size of the transaction.

Two time related types are introduced, Epoch and Duration. A Duration is the difference
between two slots, as given by −s .

One global constant is defined, SlotsPerEpoch, representing the number of slots in an epoch.
As a global constant, this value can only be changed by updating the software.

Lastly, there are two functions, epoch and firstSlot for converting between epochs and slots.

8

Abstract types
fparams ∈ FeeParams min fee parameters

dur ∈ Duration difference between slots
epoch ∈ Epoch epoch

Derived types
coin ∈ Coin = Z unit of value

Protocol Parameters

PParams =



fparams ∈ FeeParams min fee parameters
keyDeposit ∈ Coin stake key deposit

keyMinRefund ∈ [0, 1] stake key min refund
keyDecayRate ∈ [0, ∞) stake key decay rate

poolDeposit ∈ Coin stake pool deposit
poolMinRefund ∈ [0, 1] stake pool min refund
poolDecayRate ∈ [0, ∞) stake pool decay rate

movingAvgWeight ∈ [0, 1] moving average weight
movingAvgExp ∈ (0, ∞) moving average exponent

Emax ∈ Epoch epoch bound on pool retirement
nopt ∈ N+ desired number of pools

a0 ∈ (0, ∞) pool influence
τ ∈ [0, 1] treasury expansion
ρ ∈ [0, 1] monetary expansion


Accessor Functions

fparams, keyDeposit, keyMinRefund, keyDecayRate, poolDeposit, poolMinRefund, poolDecayRate,
movingAvgWeight, movingAvgExp, emax, nopt, influence, tau, rho

Abstract Functions

minfee ∈ PParams→ Tx→ Coin minimum fee calculation
(−s) ∈ Slot→ Slot→ Duration duration between slots

Global Constants
SlotsPerEpoch ∈ N slots per epoch

Derived Functions

epoch ∈ Slot→ Epoch epoch of a slot
epoch slot = slot div SlotsPerEpoch

firstSlot ∈ Epoch→ Slot first slot of an epoch
firstSlot e = e · SlotsPerEpoch

Figure 4: Definitions used in Protocol Parameters

9

6 Transactions

Transactions are defined in Figure 5. A transaction body, TxBody, is made up of six pieces:

• A set of transaction inputs. The TxIn derived type identifies an output from a previous
transaction. It consists of a transaction id and an index to uniquely identify the output.

• An indexed collection of transaction outputs. The TxOut type is an address paired with a
coin value.

• A list of certificates, which will be explained in detail in Section 8.

• A transaction fee. This value will be added to the fee pot and eventually handed out as
stake rewards.

• A time to live. A transaction will be deemed invalid if processed after this slot.

• A mapping of reward account withdrawals. The type Wdrl is a finite map that maps a
reward address to the coin value to be withdrawn. The coin value must be equal to the full
value contained in the account. Explicitly stating these values ensures that error messages
can be precise about why a transaction is invalid.

A transaction, Tx, is a transaction body together with:

• A collection of witnesses, represented as a finite map from payment verification keys to
signatures.

Additionally, the UTxO type will be used by the ledger state to store all the unspent transac-
tion outputs. It is a finite map from transaction inputs to transaction outputs that are available
to be spent.

Finally, txid computes the transaction id of a given transaction. This function must produce
a unique id for each unique transaction.

10

Abstract types
txid ∈ TxId transaction id

Derived types

(txid, ix) ∈ TxIn = TxId× Ix transaction input
(addr, c) ∈ TxOut = Addr× Coin transaction output

utxo ∈ UTxO = TxIn 7→ TxOut unspent tx outputs
wdrl ∈ Wdrl = Addrrwd 7→ Coin reward withdrawal

Transaction Types

txbody ∈ TxBody = P TxIn× (Ix 7→ TxOut)×DCert∗ × Coin× Slot×Wdrl
tx ∈ Tx = TxBody× (VKey 7→ Sig)

Accessor Functions

txins ∈ Tx→ P TxIn transaction inputs
txouts ∈ Tx→ (Ix 7→ TxOut) transaction outputs
txcerts ∈ Tx→ DCert∗ delegation certificates

txfee ∈ Tx→ Coin transaction fee
txttl ∈ Tx→ Slot time to live

txwdrls ∈ Tx→ Wdrl withdrawals
txbody ∈ Tx→ TxBody transaction body
txwits ∈ Tx→ (VKey 7→ Sig) witnesses

Abstract Functions
txid ∈ Tx→ TxId compute transaction id

Figure 5: Definitions used in the UTxO transition system

11

7 UTxO

A key constraint that must always be satisfied as a result and precondition of a valid ledger
state transition is called the general accounting property, or the preservation of value condition.
Every piece of software that is a part of the implementation of the Cardano cryptocurrency must
function in such a way as to not result in a violation of this rule. If this condition is not satisfied,
it is an indicator of incorrect accounting, potentially due to malicious disruption or a bug.

The preservation of value is expressed as an equality that uses values in the ledger state and
the environment, as well as the values in the body of the signal transaction. We have defined
the rules of the delegation protocol in a way that should consistently satisfy the preservation
of value. In the future, we hope to give a formally-verified proof that every valid ledger state
satisfies this property.

In this section, we discuss the relevant accounting that needs to be done as a result of process-
ing a transaction, i.e. the deposits for all certificates, transaction fees, transaction withdrawals,
and refunds for individual deregistration, so that we may keep track of whether the preservation
of value is satisfied. Stake pool retirement refunds are not triggered by a transaction (but rather,
happen at the epoch boundary), and are therefore not considered in our state change rules
invoked due to a signal transaction.

Note, that when a transaction is issued by a wallet to be applied to the ledger state (i.e. pro-
cessed), we define the rules in this section in such a way that it is impossible to apply only some
parts of a transaction (e.g. only certain certificates). Every part of the transaction must be valid
and it must be live, otherwise it is ignored entirely. It is the wallet’s responsibility to inform the
user that a transaction failed to be processed.

7.1 UTxO Transitions

Figure 6 defines functions needed for the UTxO transition system.

• The function outs creates unspent outputs generated by a transaction, so that they can be
added to the ledger state. For each output in the transaction, outs maps the transaction id
and output index to the output.

• The ubalance function calculates sum total of all the coin in a given UTxO.

• The wbalance function calculates sum total of all the withdrawals in a transaction.

• The calculation consumed gives the value consumed by the transaction tx in the context of
the protocol parameters, the current UTxO on the ledger, and the registered stake keys.
This calculation is a sum of all coin in the inputs of tx, reward withdrawals, and stake key
deposit refunds. Some of the definitions used in this function will be defined in Section 7.2.
In particular, keyRefunds is defined in Figure 9 and StakeKeys is defined in Figure 14.

• The calculation produced gives the value produced by the transaction tx in the context of
the protocol parameters and the registered stake pools. This calculation is a sum of all coin
in the outputs of tx, the transaction fee, and all needed deposits. Some of the definitions
used in this function will be defined in Section 7.2. In particular, deposits is defined in
Figure 9 and StakePools is defined in Figure 14.

The preservation of value property holds for a transaction, for a given ledger state, exactly
when the results of consumed equal the results of produced. Moreover, when the property holds,
value is only moved between transaction outputs, the reward accounts, the fee pot, and the
deposit pot.

Note that the consumed function takes the registered stake pools (stpools) as a parameter only
in order to determine which pool registration certificates are new (and thus require a deposit)
and which ones are updates. Registration will be discussed more in Section 8.

12

outs ∈ Tx→ UTxO tx outputs as UTxO
outs tx = {(txid tx, ix) 7→ txout |ix 7→ txout ∈ txouts tx}

ubalance ∈ UTxO→ Coin UTxO balance

ubalance utxo = ∑
(7→(, c))∈utxo

c

wbalance ∈ Wdrl→ Coin withdrawal balance

wbalance ws = ∑
7→c∈ws

c

consumed ∈ PParams→ UTxO→ StakeKeys→ Wdrl→ Tx→ Coin value consumed
consumed pp utxo stkeys rewards tx =

ubalance (txins tx � utxo) + wbalance (txwdrls tx)
+ keyRefunds pp stkeys tx

produced ∈ PParams→ StakePools→ Tx→ Coin value produced
produced pp stpools tx =

ubalance (outs tx) + txfee tx + deposits pp stpools (dcerts tx)

Figure 6: Functions used in UTxO rules

13

The types for the UTxO transition are given in Figure 7. The environment, UTxOEnv, consists
of:

• The current slot.

• The protocol parameters.

• The registered stake keys (which will be explained in Section 8, Figure 14).

• The registered stake pools (also explained in Section 8, Figure 14).

The current slot and the registrations are need for the refund calculations described in Section 7.2.
The state needed for the UTxO transition, UTxOState, consists of:

• The current UTxO.

• The deposit pot.

• The fee pot.

The signal for the UTxO transition is a transaction.

UTxO environment

UTxOEnv =


slot ∈ Slot current slot
pp ∈ PParams protocol parameters

stkeys ∈ StakeKeys stake key
stpools ∈ StakePools stake pool


UTxO States

UTxOState =

 utxo ∈ UTxO UTxO
deposits ∈ Coin deposits pot

fees ∈ Coin fee pot


UTxO transitions

` −−−→
UTXO

⊆ P (UTxOEnv× UTxOState× Tx× UTxOState)

Figure 7: UTxO transition-system types

The UTxO transition system is given in Figure 8. Rule 1 specifies the conditions under which
a transaction can be applied to a particular UTxOState in environment UTxOEnv:

The transition contains the following predicates:

• The transaction is live (the current slot is less than its time to live).

• The transaction has at least one input. The global uniqueness of transaction inputs
prevents replay attacks. By requiring that all transactions spend at least one input, the
entire transaction is safe from such attacks. A delegation certificate by itself, for example,
does not have this property.

• The fee paid by the transaction has to be greater than or equal to the minimum fee, which
is based on the size of the transaction. A user or wallet might choose to create a fee larger
than necessary in exchange for a faster processing time.

• Each input spent in the transaction must be in the set of unspent outputs.

14

• The preservation of value property must hold. In other words, the amount of value produced
by the transaction must be the same as the amount consumed.

• The coin value of each new output must be non-negative.

If all the predicates are satisfied, the state is updated as follows:

• Update the UTxO:

– Remove from the UTxO all the (txin, txout) pairs associated with the txins’s in the
inputs list of tx.

– Add all the outputs of tx to the UTxO, associated with the txid tx

• Add all new deposits to the deposit pot and subtract all refunds.

• Add the transaction fee to the fee pot. Additionally, for any refund returned by this
transaction, add the amount of the original deposit which has decayed to the fee pot. The
amount decayed will depend on the time to live of the transaction and will be explained
further in Section 7.2.

The accounting for the reward withdrawals is not done in this transition system. The rewards
are tracked with the delegation state and will be removed in the final delegation transition, see
11.

Note here that output entries for both the deposit refunds and the rewards withdrawals must
be included in the body of the transaction carrying the deregistration certificates (requesting
these refunds) and the reward requests. It is the job of the wallet to calculate the value of these
refunds and withdrawals, and generate the correct outputs to include in the outputs list of tx
such that applying this transaction results in a valid ledger update adding correct amounts of
coin to the right addresses.

The approach of including refunds and rewards directly in the outputs gives great flexibility
to the management of the coin value obtained from these accounts, i.e. it can be directed to any
address. However, it means there is no direct link between the wdrls requests (similarly, the
key deregistration certificate addresses and refund amounts) and the outputs. We verify that
the included outputs are correct and authorized through the preservation of value condition
and witnessing the transaction. The combination of the preservation of value and witnessing,
described in Section 7.3, assures that the ledger state is updated correctly.

The main difference, however, in how rewards and refunds work is that refunds come from a
deposits pool, which is a single coin value indicating the total decayed amount of all the deposits
ever made, while rewards come from individual accounts where a reward is accumulated to a
specific address.

Note that the refunded and decayed values added together give what the full, non-decayed
refund for all the key deregistration certificates in tx would be, and this total value is always
removed from the deposits amount on the ledger. The refunded amount is returned to the
certificate author, and the decayed amount is transferred over to fees (this allows the ledger to
adhere to the preservation of value).

Note also that the reason only the decayed value of requested refunds from this epoch is
transferred to fees is that at the epoch boundary, the total decayed value for the whole epoch
for both the individual and pool deposits is transferred into the fees (independent of refund
requests).

15

UTxO-inductive

txttl tx ≥ slot txins tx 6= ∅ minfee pp tx ≤ txfee tx txins tx ⊆ dom utxo
consumed pp utxo stkeys rewards tx = produced pp stpools tx

∀(7→ (, c)) ∈ txouts tx, c ≥ 0

refunded = keyRefunds pp stkeys tx
decayed = decayedTx pp stkeys tx

depositChange = (deposits pp stpools dcerts tx)− (refunded + decayed)

slot
pp
stkeys
stpools

`

 utxo
deposits

fees

 tx−−−→
UTXO

 (txins tx /� utxo)∪ outs tx
deposits + depositChange
fees + txfee tx + decayed


(1)

Figure 8: UTxO inference rules

16

7.2 Deposits and Refunds

Deposits are described in appendix B.2 of the delegation design document Kant et al. (2018).
These deposit functions were used above in the UTxO transition, 7.1. Deposits are used for stake
key registration certificate and pool registration certificates, which will be explained in Section 8.
In particular, the function cwitness , which gets the certificate witness from a certificate, will be
defined later. Figure 9 defines the deposit and refund functions.

• The function deposits returns the total deposits that have to be made by a transaction. This
calculation is based on the protocol parameters. Specifically, for a given transaction, it
sums up the values of the stake key deposits and the stake pool deposits. Those certificates
which are updates of stake pool parameters of already registered pool keys should not
(and are, in fact, not allowed to) make a deposit.

• The function refund calculates the deposit refund with an exponential decay.

• The function keyRefund, calculates the refund for an individual stake key registration
deposit, based on the slot when it was created and the slot passed to the function. The
creation slot should always exist in the map stkeys passed to the function, and this would
be a good property to prove about the transition system.

• The function keyRefunds, in turn, uses keyRefund to calculate the total value to be refunded
to all individual key deregistration certificate authors in a transaction.

It is important to note here that instead of the current slot number, the time to live of tx
is passed to the certRefunds function within the summation in keyRefunds. The reason for
this is that the refunds for any key deregistration certificates are, in fact, included in the
tx itself — meaning that the coin value of the refund must be explicitly specified in the
outputs of the transaction. So, the value of the included refund must be calculated before
this transaction is ever processed, and be the same no matter when the tx is actually processed
in order to allow the system to continue to satisfy the general accounting property.

It is impossible to predict the exact slot number in which tx will be processed, but it will
be some time before slot number txttl tx. So, this is the slot number value used in both
the calculation to generate the refund coin value in the outputs of tx and in the general
accounting property equation.

Note also that keyRefunds calculates the total individual refunds for a transaction based
on current protocol parameters. This means that any deposits made prior to a change will
be different from their corresponding (decayed) refunds in the case of key deregistration
after a change in protocol parameters. Constants may only change at the epoch boundary,
and ensuring there are always sufficient funds for all refunds in the deposits pool is part of
the protocol constant change transition, described in Section 10.

The protocol parameters are not expected to change often, and using the current ones
for the calculation is a deliberate simplification choice, which does not introduce any
inconsistencies into the system rules or properties. In particular, the general accounting
property is not violated.

Figure 10 defines the decays functions.

• The function decayedKey calculates how much of a stake key deposit has decayed since
the last epoch. Again, this is done using the time to live of the transaction (and not the
current slot, as explained above). At the epoch boundaries, decayed portions of deposits
are moved to the reward pot, so between epochs we need only account for what has
decayed since the last epoch. The value is calculated by subtracting the refund calculation
based at the epoch boundary from the refund calculation based at the time to live of the
transaction.

17

• The function decayedTx calculates the total decayed deposits associated with all the refunds
in a given transaction. This function was used earlier in the UTxO transition in Figure 8.

Recall that the stake pool retirement refunds are issued not when a certificate scheduling the
retirement is processed, but at the epoch boundary for which the retirement is scheduled. The
decayed value over the full previous epoch is also accounted for at the boundary change. For
details of this accounting, see Section Section 10.

deposits ∈ PParams→ StakePools→ DCert∗ → Coin total deposits for transaction
deposits pp stpools certs =

∑
c∈certs∩DCertregkey

(keyDeposit pp) + ∑
c∈certs∩DCertregpool
(cwitness c)/∈stpools

(poolDeposit pp)

refund ∈ Coin→ [0, 1]→ (0, ∞)→ Duration→ Coin refund calculation

refund dval dmin λ δ =
⌊

dval ·
(

dmin + (1− dmin) · e−λ·δ
)⌋

keyRefund ∈ Coin→ [0, 1]→ (0, ∞)→
StakeKeys→ Slot→ DCertderegkey → Coin key refund for a certificate

keyRefund dval dmin λ stkeys slot c ={
0 if cwitness c /∈ dom stkeys
refund dval dmin λ δ otherwise

where δ = slot −s (stkeys (cwitness c))

keyRefunds ∈ PParams→ StakeKeys→ Tx→ Coin key refunds for a transaction
keyRefunds pp stkeys tx =

∑
c∈dcerts tx

c∈DCertderegkey

keyRefund dval dmin λ stkeys (txttl tx) c

where
dval = keyDeposit pp

dmin = keyMinRefund pp
λ = keyDecayRate pp

Figure 9: Functions used in Deposits - Refunds

18

decayedKey ∈ PParams→ StakeKeys→ Slot→ DCertderegkey → Coin decayed since epoch
decayedKey pp stkeys cslot c ={

0 if cwitness c /∈ dom stkeys
epochRefund− currentRefund otherwise

where created = stkeys (cwitness c)
start = max (firstSlot epoch cslot) created

epochRefund = keyRefund dval dmin λ stkeys start c
currentRefund = keyRefund dval dmin λ stkeys cslot c

dval = keyDeposit pp
dmin = keyMinRefund pp

λ = keyDecayRate pp

decayedTx ∈ PParams→ StakeKeys→ Tx→ Coin decayed deposit portions
decayedTx pp stkeys tx =

∑
c∈dcerts tx

c∈DCertderegkey

decayedKey pp stkeys (txttl tx) c

Figure 10: Functions used in Deposits - Decay

19

7.3 Witnesses

The purpose of witnessing is make sure that the intended action is authorized by the holder
of the signing key, providing replay protection as a consequence. Replay prevention is an
inherent property of UTxO type accounting since transaction IDs are unique, and we require all
transaction to consume at least one input.

A transaction is witnessed by a signature and a verification key corresponding to this
signature. The witnesses, together with the transaction body, form a full transaction. Every
witness in a transaction signs the transaction body. Moreover, the witnesses are represented
as finite maps from verification keys to signatures, so that any key that is required to sign a
transaction only provides a single witness. This means that, for example, transaction which
includes a delegation certificate and a reward withdrawal corresponding to the same stake key
still only includes one signature.

Figure 11 defines the function which gathers all the (hashes of) verification keys needed to
witness a given transaction. This consists of:

• payment keys for outputs being spent

• stake keys for reward withdrawals

• stake keys for delegation certificates (all five types)

• stake keys for the pool owners in a pool registration certificate

witsNeeded ∈ UTxO→ Tx→ P HashKey hashkeys for needed witnesses
witsNeeded utxo tx =

{paymentHK a | i 7→ (a,) ∈ utxo, i ∈ txins tx} ∪
{stakeHKr a | a 7→ ∈ txwdrls tx} ∪
{cwitness c | c ∈ txcerts tx} ∪⋃

c∈txcerts tx
c∈DCertregpool

poolOwners c

Figure 11: Functions used in witness rule

The UTxOW transition system adds witnessing to the previous UTxO transition system.
Figure 12 defines the type for this transition.

Figure 13 defines UTxOW transition. It has two predicates:

• Every signature in the transaction is a valid signature of the transaction body.

• The set of (hashes of) verification keys given by the transaction is exactly the set of needed
(hashes of) verification keys.

If the predicates are satisfied, the state is transitioned by the UTxO transition rule.

UTxO with witness transitions

` −−−−→
UTXOW

⊆ P (UTxOEnv× UTxOState× Tx× UTxOState)

Figure 12: UTxO with witness transition-system types

20

UTxO-wit

(utxo, ,) = utxoSt

∀vk 7→ σ ∈ txwits tx,VvkJtxbody txKσ
witsNeeded utxo tx = {hashKey vk | vk ∈ dom (txwits tx)}

utxoEnv ` utxoSt tx−−−→
UTXO

utxoSt′

utxoEnv ` utxoSt tx−−−−→
UTXOW

utxoSt′
(2)

Figure 13: UTxO with witnesses inference rules

21

8 Delegation

We briefly describe the motivation and context for delegation. The full context is contained in
Kant et al. (2018).

Stake is said to be active in the blockchain protocol when it is eligible for participation in the
leader election. In order for stake to become active, the associated verification stake key must
be registered and its staking rights must be delegated to an active stake pool. Individuals who
wish to participate in the protocol can register themselves as a stake pool.

Stake keys are registered (deregistered) through the use of registration (deregistration)
certificates. Registered stake keys are delegated through the use of delegation certificates. Finally,
stake pools are registered (retired) through the use of registration (retirement) certificates.

Stake pool retirement is handled a bit differently than stake key deregistration. Stake keys
are considered inactive as soon as a deregistration certificate is applied to the ledger state. Stake
pool retirement certificates, however, specify the epoch in which it will retire.

Delegation requires the following to be tracked by the ledger state: the registered stake
keys, the delegation map from registered stake keys to stake pools, pointers associated with
stake keys, the registered stake pools, and upcoming stake pool retirements. Additionally, the
blockchain protocol rewards eligible stake, and so we must also include a mapping from active
stake keys to rewards.

8.1 Delegation Definitions

In Figure 14 we give the delegation primitives. Here we introduce the following primitive
datatypes used in delegation:

• DCertregkey: a stake key registration certificate.

• DCertderegkey: a stake key de-registration certificate.

• DCertdelegate: a stake key delegation certificate.

• DCertregpool: a stake pool registration certificate.

• DCertretirepool: a stake key retirement certificate.

• DCert: any one of of the five certificate types above.

The following derived types are introduced:

• StakeKeys represents registered stake keys, and is represented by a finite map from
hashkeys to slot when it was registered.

• StakePools represents registered stake pools, and has the same type as StakeKeys.

• PoolParam represents the parameters found in a stake pool registration certificate that
must be tracked:

– the pool owners.

– the pool cost.

– the pool margin.

– the pool pledge.

– the pool reward account.

22

The idea of pool owners is explained in Section 4.4.4 of Kant et al. (2018). The pool cost
and margin indicate how much more of the rewards pool leaders get than the members.
The pool pledge is explained in Section 5.1 of Kant et al. (2018). The pool reward account
is where all pool rewards go.

Accessor functions for certificates and pool parameters are also defined, but only the cwitness
accessor function needs explanation. It does the following:

• For a DCertregkey certificate, cwitness returns the hashkey of the key being registered.

• For a DCertderegkey certificate, cwitness returns the hashkey of the key being de-registered.

• For a DCertdelegate certificate, cwitness returns the hashkey of the key that is delegating (and
not the key to which the stake in being delegated to).

• For a DCertregpool certificate, cwitness returns the hashkey of the key of the pool operator.

• For a DCertretirepool certificate, cwitness returns the hashkey of the key of the pool operator.

Abstract types

Delegation Certificate types

DCert=DCertregkey]DCertderegkey]DCertdelegate
] DCertregpool]DCertretirepool

Derived types

StakeKeys = HashKey 7→ Slot registered stake keys
StakePools = HashKey 7→ Slot registered stake pools
PoolParam = P HashKey× Coin× [0, 1]× Coin× Addrrwd stake pool parameters

Certificate Accessor functions

cwitness ∈ DCert→ HashKey certificate witness
dpool ∈ DCertdelegate → HashKey pool being delegated to

poolParam ∈ DCertregpool → PoolParam stake pool
retire ∈ DCertretirepool → Epoch epoch of pool retirement

Pool Parameter Accessor functions

poolOwners ∈ PoolParam→ P HashKey stake pool owners
poolCost ∈ PoolParam→ Coin stake pool cost

poolMargin ∈ PoolParam→ [0, 1] stake pool margin
poolPledge ∈ PoolParam→ Coin stake pool pledge
poolRAcnt ∈ PoolParam→ Addrrwd stake pool reward account

Figure 14: Delegation Definitions

23

8.2 Delegation Transitions

In Figure 15 we give the delegation and stake pool state transition types. We define two separate
parts of the ledger state.

• DState keeps track of the delegation state, consisting of:

– stkeys tracks the registered stake keys. It consists of a finite mapping from hashkeys
to the slot of the registration.

– rewards stores the rewards accumulated by stake keys. These are represented by a
finite map from reward addresses to the accumulated rewards.

– delegations stores the delegation relation, mapping stake keys to the pool to which is
delegates.

– ptrs maps stake keys to the position of the registration certificate in the blockchain.
This is needed to lookup the stake hashkey of a pointer address.

• PState keeps track of the stake pool information:

– stpools tracks the registered stake pools. It consists of a finite mapping from hashkeys
to the slot of the registration.

– poolParams tracks the parameters associated with each stake pool, such as their costs
and margin.

– retiring tracks stake pool retirements, using a map from hashkeys to the epoch in
which it will retire.

– avgs stores the latest value of the pool’s performance moving average. This value
quantifies the desirability of delegating to a given pool, based on past performance.

The environment for the state transition for DState contains the current slot number and
the index for the current certificate pointer. The environment for the state transition for PState
contains the current slot number and the protocol parameters.

24

Delegation States

DState =


stkeys ∈ StakeKeys registered stake keys

rewards ∈ Addrrwd 7→ Coin rewards
delegations ∈ HashKeystake 7→ HashKeypool delegations

ptrs ∈ Ptr 7→ HashKey pointer to hashkey



PState =


stpools ∈ StakePools registered pools to creation time

poolParams ∈ HashKeypool 7→ PoolParam registered pools to pool parameters
retiring ∈ HashKeypool 7→ Epoch retiring stake pools

avgs ∈ HashKeypool 7→ R≥0 performance moving average


Delegation Environment

DEnv =

(
slot ∈ Slot slot
ptr ∈ Ptr certificate pointer

)
Pool Environment

PEnv =

(
slot ∈ Slot slot
pp ∈ PParams protocol parameters

)
Delegation Transitions

` −−−→
DELEG

∈ P (DEnv×DState×DCert×DState)

` −−−→
POOL

∈ P (PEnv× PState×DCert× PState)

Figure 15: Delegation Transitions

25

8.3 Delegation Rules

The rules for registering and delegating stake keys are given in Figure 16. Note that section 5.2
of Kant et al. (2018) describes how a wallet would help a user choose a stake pool, though these
concerns are independent of the ledger rules.

• Stake key registration is handled by Equation (3), since it contains the precondition that
the certificate has type DCertregkey. All the equations in DELEG and POOL follow this same
pattern of matching on certificate type.

There is also a precondition on registration that the hashkey associated with the certificate
witness of the certificate is not already found in the current list of stake keys.

Registration causes the following state transformation:

– The key is added to the set of registered stake keys.

– A reward account is created for this key, with a starting balance of zero.

– The certificate pointer is mapped to the new stake key.

• Stake key deregistration is handled by Equation (4). There is a precondition that the
key has been registered, and that the reward balance is zero. Deregistration causes the
following state transformation:

– The key is removed from the collection of registered keys.

– The reward account is removed.

– The key is removed from the delegation relation.

– The certificate pointer is removed.

• Stake key delegation is handled by Equation (5). There is a precondition that the key has
been registered. Delegation causes the following state transformation:

– The delegation relation is updated so that stake stake key is delegated to the given
stake pool. The use of union override here allows us to use the same rule to perform
both an initial delegation and an update to an existing delegation.

26

Deleg-Reg
c ∈ DCertregkey hk = cwitness c hk /∈ dom stkeys

slot
ptr `


stkeys

rewards
delegations

ptrs

 c−−−→
DELEG


stkeys ∪ {hk 7→ slot}

rewards ∪ {addrrwd hk 7→ 0}
delegations

ptrs ∪ {ptr 7→ hk}


(3)

Deleg-Dereg

c ∈ DCertderegkey hk = cwitness c
hk ∈ dom stkeys hk 7→ 0 ∈ rewards

slot
ptr `


stkeys

rewards
delegations

ptrs

 c−−−→
DELEG


{hk} /� stkeys

{addrrwd hk} /� rewards
{hk} /� delegations
{ptr} /� ptrs


(4)

Deleg-Deleg
c ∈ DCertdelegate hk = cwitness c hk ∈ dom stkeys

slot
ptr `


stkeys

rewards
delegations

ptrs

 c−−−→
DELEG


stkeys

rewards
delegations ∪−→ {hk 7→ dpool c}

ptrs


(5)

Figure 16: Delegation Inference Rules

27

8.4 Stake Pool Rules

The rules for updating the part of the ledger state defining the current stake pools are given in
Figure 17. The calculation of stake distribution is described in Section 10.3.

In the pool rules, the stake pool is identified with the hashkey of the pool operator. For each
rule, again, we first check that a given certificate c is of the correct type.

• Stake pool registration is handled by Equation (6). It is required that the pool not be
currently registered. Registration causes the following state transformation:

– The key is added to the set of registered stake pools.

– The pool’s parameters are stored.

• Stake pool parameter updates are handled by Equation (6). This rule, which also matches
on the certificate type DCertRegPool, is distinguished from Equation (6) by the requirement
that the pool be registered. This rule also ends stake pool retirements. Reregistration
causes the following state transformation:

– The pool’s parameters are updated.

– The pool is removed from the collection of retiring pools.

– Note that stpools is not updated. The registration creation slot does does not change.

• Stake pool retirements are handled by Equation (8). Given a slot number slot, the appli-
cation of this rule requires that the planned retirement epoch e stated in the certificate is
in the future, i.e. after cepoch, the epoch of the current slot number in this context, as well
as that it is less than Emax epochs after the current one. It is also required that the pool be
registered. Note that imposing the Emax constraint on the system is not strictly necessary.
However, forcing stake pools to announce their retirement a shorter time in advance will
curb the growth of the retiring list in the ledger state.

The pools scheduled for retirement must be removed from the retiring state variable at the
end of the epoch they are scheduled to retire in. This non-signaled transition (triggered,
instead, directly by a change of current slot number in the environment), along with all
other transitions that take place at the epoch boundary, are described in Section 10.

Reregistration causes the following state transformation:

– The pool is marked to retire on the given epoch. If it was previously retiring, the
retirement epoch is now updated.

28

Pool-Reg
c ∈ DCertregpool hk = cwitness c hk /∈ dom stpools

slot
pp `


stpools

poolParams
retiring

avgs

 c−−−→
POOL


stpools ∪ {hk 7→ slot}

poolParams ∪ {hk 7→ poolParam c}
retiring

avgs


(6)

Pool-reReg
c ∈ DCertregpool hk = cwitness c hk ∈ dom stpools

slot
pp `


stpools

poolParams
retiring

avgs

 c−−−→
POOL


stpools

poolParams ∪−→ {hk 7→ poolParam c}
{hk} /� retiring

avgs


(7)

Pool-Retire

c ∈ DCertretirepool hk = cwitness c hk ∈ dom stpools
e = retire c cepoch = epoch slot cepoch < e < cepoch + (emax pp)

slot
pp `


stpools

poolParams
retiring

avgs

 c−−−→
POOL


stpools

poolParams
retiring ∪−→ {hk 7→ e}

avgs


(8)

Figure 17: Pool Inference Rule

29

8.5 Delegation and Pool Combined Rules

We now combine the delegation and pool transition systems. Figure 18 gives the state, environ-
ment, and transition type for the combined transition.

Delegation and Pool Combined Environment

DPEnv =

 slot ∈ Slot slot
ptr ∈ Ptr certificate pointer
pp ∈ PParams protocol parameters


Delegation and Pool Combined State

DPState =

(
dstate ∈ DState delegation state
pstate ∈ PState pool state

)
Delegation and Pool Combined Transition

` −−−→
DELPL

∈ P (DPEnv×DPState×DCert×DPState)

Figure 18: Delegation and Pool Combined Transition Type

30

Figure 19, gives the rules for the combined transition. Note that for any given certificate,
at most one of the two rules (Equation (9) and Equation (10)) will be successful, since the pool
certificates are disjoint from the delegation certificates.

Delegation and Pool Combined Rules

Delpl-Del

slot
ptr ` dstate c−−−→

DELEG
dstate′ slot

ptr
pp

 ` (dstate
pstate

)
c−−−→

DELPL

(
dstate′

pstate

) (9)

Delpl-Pool

slot
pp ` pstate c−−−→

POOL
pstate′ slot

ptr
pp

 ` (dstate
pstate

)
c−−−→

DELPL

(
dstate

pstate′

) (10)

Figure 19: Delegation and Pool Combined Transition Rules

We now describe a transition system that processes the list of certificates inside a transaction.
It is defined recursively from the transition system in Figure 19 above.

Figure 20 defines the types for the delegation certificate sequence transition.

Certificate Sequence Environment

DPSEnv =

 slot ∈ Slot slot
txIx ∈ Ix transaction index

pp ∈ PParams protocol parameters


` −−−−→

DELEGS
∈ P (DPSEnv×DPState×DCert∗ ×DPState)

Figure 20: Delegation sequence transition type

Figure 21 defines the transition system recursively. This definition guarantees that a certifi-
cate list (and therefore, the transaction carrying it) cannot be processed unless every certificate in
it is valid. For example, if a transaction is carrying a certificate that schedules a pool retirement
in a past epoch, the whole transaction will be invalid.

• The base case, when the list is empty, is captured by Equation (11). In the base case, we
address one final accounting detail not yet covered by the UTxO transition, namely setting
the reward account balance to zero for any account that made a withdrawal. There is
therefore a precondition that all withdrawals are correct, where correct means that there is
a reward account for each stake key, and that the balance matches that of the reward being
withdrawn. The base case triggers the following state transformation:

– Reward accounts are set to zero for each corresponding withdrawal.

• The inductive case, when the list is non-empty, is captured by Equation (12). It constructs
a certificate pointer given the current slot and transaction index, calls DELPL on the next
certificate in the list, and inductively calls DELEGS on the rest of the list. The inductive
case triggers the following state transformation:

31

– The delegation and pool states are (inductively) updated by the results of DELEGS,
which is then updated according to DELPL.

Seq-delg-base

wdrls = txwdrls tx wdrls ⊆ rewards
rewards′ = rewards ∪−→ {(w, 0) | w ∈ dom wdrls}

 slot
txIx

pp

 `



stkeys
rewards

delegations
ptrs

stpools
poolParams

retiring
avgs


ε−−−−→

DELEGS



stkeys
rewards′

delegations
ptrs

stpools
poolParams

retiring
avgs



(11)

Seq-delg-ind

c ∈ DCertdelegate ⇒ dpool c ∈ dom stpools
ptr = (slot, txIx, len Γ− 1) slot

txIx
pp

 ` dpstate Γ−−−−→
DELEGS

dpstate′

 slot
ptr
pp

 ` dpstate′ c−−−→
DELPL

dpstate′′

 slot
txIx

pp

 ` dpstate Γ;c−−−−→
DELEGS

dpstate′′

(12)

Figure 21: Delegation sequence rules

32

9 Ledger State Transition

The entire state transformation of the ledger state caused by a valid transaction can now be
given as the combination of the UTxO transition and the delegation transitions.

Figure 22 defines the types for this transition. The environment for this rule is consists of:

• The current slot.

• The transaction index within the current block.

• The protocol parameters.

The ledger state consists of:

• The UTxO state.

• The delegation and pool states.

Ledger environment

LEnv =

 slot ∈ Slot current slot
txIx ∈ Ix transaction index

pp ∈ PParams protocol parameters


Ledger state

LState =

(
utxoSt ∈ UTxOState UTxO state
dpstate ∈ DPState delegation and pool state

)
Ledger transitions

` −−−−→
LEDGER

⊆ P (LEnv× LState× Tx× LState)

Figure 22: Ledger transition-system types

Figure 22 defines the ledger state transition. It has a single rule, which first calls the UTXOW
transition, and then calls the DELEGS transition.

33

ledger

(dstate, pstate) = dpstate
(stkeys, , ,) = dstate
(, , stpools,) = pstate

slot
pp

stkeys
stpools

 ` utxoSt tx−−−−→
UTXOW

utxoSt′

 slot
txIx
pp

 ` dpstate tx−−−−→
DELEGS

dpstate′

 slot
txIx
pp

 ` (utxoSt
dpstate

)
tx−−−−→

LEDGER

(
utxoSt′

dpstate′

) (13)

Figure 23: Ledger inference rule

34

10 Rewards and the Epoch Boundary

This chapter introduces two main transition systems. Neither transition is triggered by a
transaction, and in fact have no signal.

The first one, defined in Section 10.7, involves calculations that occur at the epoch boundary.
This includes taking stake distribution snapshots (Sections 10.2 and 10.4), retiring stake pools
(Section 10.5), and performing protocol updates (Section 10.6). The second transition, defined in
Sections 10.8 and 10.9, distributes the leader election rewards.

10.1 Overview of the Reward Calculation

The rewards for a given epoch ei involve the two epochs surrounding it. In particular, the
stake distribution will come from the previous epoch, and the rewards will be calculated in the
following epoch. More concretely:

(A) A stake distribution snapshot is taken at the begining of epoch ei−1.

(B) The randomness for leader election is fixed during epoch ei−1

(C) Epoch ei begins.

(D) Epoch ei ends. A snapshot is taken of the stake pool performance during epoch ei. A
snapshot is also taken of the fee pot and the decayed deposit values.

(E) The snapshots from (D) are stable and the reward calculation can begin.

(F) Rewards are given out.

ei−1 ei ei+1

A B C D E F G

We must therefore store the last three stake distributions. The mnemonic “mark, set, go”
will be used to keep track of the snapshots, where the label “mark” refers to the most recent
snapshot, and “go” refers to the snapshot that is ready to be used in the reward calculation. In
the above diagram, the snapshot taken at (A) is labeled “mark” during epoch ei−1, “set” during
epoch ei, and “go” during epoch ei+1. At (G) the snapshot taken at (A) is no longer needed and
will be discarded.

The two main transition systems in this section are:

• The transition system named EPOCH, which is defined in Section 10.7, covering what
happens at the epoch boundary, such as at (A), (C), (D), and (G).

• The transition named REWARD, which is defined in Section 10.9, covering the reward
calculation which happens between (E) and (F).

10.2 Helper Functions

Figure 24 defines four helper functions needed throughout the rest of the section.

• The function obligation calculates the the minimal amount of coin needed to pay out all
deposit refunds, as of the current slot.

35

• The function poolRefunds is used to calculate the total refunds that must be distributed
for stake pools scheduled to retire. Note that this calculation takes a slot number corre-
sponding to the epoch boundary slot when the calculation is performed. The returned
map maps pool operator hashkeys to the refunds, which will ultimately be returned to the
registered reward account.

• The function poolStake filters the stake distribution to one stake pool.

• The function updateAvgs calculates the new performance moving averages.

Total possible refunds

obligation ∈ PParams→ StakeKeys→ StakePools→ Slot→ Coin

obligation pp stkeys stpools cslot =

∑
(7→s)∈stkeys

refund dval dmin λd (cslot −s s) + ∑
(7→s)∈stpools

refund pval pmin λp (cslot −s s)

where dval, dmin, λd = keyDeposit pp, keyMinRefund pp, keyDecayRate pp
pval, pmin, λp = poolDeposit pp, poolMinRefund pp, poolDecayRate pp

Pool refunds

poolRefunds ∈ PParams→ (HashKeypool 7→ Epoch)→ Slot→ (HashKeypool 7→ Coin)

poolRefunds pp retiring cslot = {hk 7→ refund pval pmin λ (cslot −s (slot e)) | hk 7→ e ∈ retiring}
where pval, pmin, λp = poolDeposit pp, poolMinRefund pp, poolDecayRate pp

Filter Stake to one Pool

poolStake ∈ HashKeypool → (HashKeystake 7→ HashKeypool)→ Stake→ Stake

poolStake hk delegs stake = dom (delegs � {hk})� stake

Update Moving Averages

updateAvgs ∈ PParams→ Avgs→ BlocksMade→ (HashKeystake 7→ HashKeypool)→ Stake→ Avgs

updateAvgs pp avgs blocks delegs stake =
{hk 7→ movingAvg pp hk n (expected hk) avgs | hk 7→ n ∈ blocks}

where

tot = ∑
7→c∈stake

c

expected hk =

 ∑
7→c∈(poolStake hk delegs stake)

c

 · SlotsPerEpoch/tot

Figure 24: Helper Functions used in Rewards and Epoch Boundary

10.3 Stake Distribution Calculation

This section defines the stake distribution calculations. Figure 25 introduces three new derived
types:

36

• BlocksMade represents the number of blocks each stake pool produced during an epoch.

• Stake represents the amount of stake (in Coin) controlled by each stake pool.

• Avgs represents the performance moving averages of the stake pools.

Derived types

blocks ∈ BlocksMade = HashKeypool 7→N blocks made by stake pools
stake ∈ Stake = HashKeystake 7→ Coin stake
avgs ∈ Avgs = HashKeypool 7→ R≥0 performance moving averages

Figure 25: Epoch definitions

The stake distribution calculation is given in Figure 26.

• aggregate+ takes a relation on A× B, where B is any monoid, and returns a map from each
a ∈ A to the sum of all b ∈ B such that (a, b) ∈ B.

• stakeDistr uses the aggregate+ function and several relations to compute the stake distri-
bution, mapping each hashkey to the total coin under its control. Keys that are not both
registered and delegated are filtered out. The relation passed to aggregate+ is made up of:

– stakeHKb
−1, relating hashkeys to (base) addresses

– (addrPtr ◦ ptr)−1, relating hashkeys to (pointer) addresses

– range utxo, relating addresses to coins

– stakeHKr
−1 ◦ rewards, relating (reward) addresses to coins

The notation for relations is explained in Section 2.

37

Aggregation (for a monoid B)

aggregate+ ∈ P (A× B)→ (A 7→ B)

aggregate+ R =

{
a 7→ ∑

(a,b)∈R
b | a ∈ dom R

}

Stake Distribution (using functions and maps as relations)

stakeDistr ∈ UTxO→ DState→ PState→ Stake

stakeDistr utxo dstate pstate = (dom activeDelegs)� (aggregate+ stakeRelation)
where
(stkeys, rewards, delegations, ptrs) = dstate
(stpools, , ,) = pstate

stakeRelation =
((

stakeHKb
−1 ∪ (addrPtr ◦ ptr)−1

)
◦ (range utxo)

)
∪
(

stakeHKr
−1 ◦ rewards

)
activeDelegs = (dom stkeys)� delegations � (dom stpools)

Figure 26: Stake Distribution Function

38

10.4 Snapshot Transition

The state transition types for stake distribution snapshots are given in Figure 27. The type
Snapshots contains the information needing to be saved on the epoch boundary:

• pstakemark, pstakeset, and pstakego are the three stake distribution snapshots (paired with the
corresponding delegation map), as explained in Section 10.1.

• poolsSS stores the pool parameters from the epoch boundary.

• blocksSS stores the performance of the completed epoch.

• feeSS stores the fees and decayed deposit amounts at the epoch boundary.

Snapshot environment

SnapshotEnv =


enew ∈ Epoch the upcoming epoch

pp ∈ PParams protocol parameters
dstate ∈ DState delegation state
pstate ∈ PState pool state
blocks ∈ BlocksMade blocks made


Snapshots

Snapshots =



pstakemark ∈ Stake× (HashKeystake 7→ HashKeypool) newest stake
pstakeset ∈ Stake× (HashKeystake 7→ HashKeypool) middle stake
pstakego ∈ Stake× (HashKeystake 7→ HashKeypool) oldest stake
poolsSS ∈ HashKey 7→ PoolParam pool parameters

blocksSS ∈ BlocksMade blocks made
feeSS ∈ Coin fee snapshot


Snapshot States

SnapshotState =

(
ss ∈ Snapshots snapshots

utxoSt ∈ UTxOState utxo state

)
Snapshot transitions

` −−−→
SNAP

⊆ P (SnapshotEnv× SnapshotState× SnapshotState)

Figure 27: Snapshot transition-system types

The snapshot transition rule is given in Figure 28. This transition has no preconditions and
results in the following state change:

• The oldest snapshot is replaced with the penultimate one.

• The penultimate snapshot is replaced with the newest one.

• The newest snapshot is replaced with one just calculated.

• The pool parameters are stored.

• The pool performance is stored.

• The fees and decayed deposits are stored in feeSS. Note that this value will not change
between epochs, unlike the fees and deposits values in the UTxO state.

39

• In the UTxO state, the decayed deposit amounts are moved from the deposit pot to the
fee pool. Note that in the reward transition (Section 10.9), the value feeSS will be removed
from the fee pot in the UTxO state. The decay is calculated based on the first slot in the
upcoming epoch.

Snapshot

(utxo, deposits, fees)=utxoSt
(stkeys, , delegations,)=dstate

(stpools, poolParams, ,)=pstate
stake=stakeDistr utxo dstate pstate

slot=firstSlot enew
oblg=obligation pp stkeys stpools slot

decayed=deposits− oblg

enew
pp
dstate
pstate
blocks

`



pstakemark
pstakeset
pstakego
poolsSS

blocksSS
feeSS

utxo
deposits

fees


−−−→

SNAP



(stake, delegations)
pstakemark

pstakeset
poolParams

blocks
fees + decayed

utxo
oblg

fees + decayed



(14)

Figure 28: Snapshot Inference Rule

40

10.5 Pool Reaping Transition

Figure 29 defines the types for the pool reap transition, which is responsible for removing pools
slated for retirement in the given epoch.

Pool Reap environment

PlReapEnv =

(
enew ∈ Epoch the upcoming epoch

pp ∈ PParams protocol parameters

)
Pool Reap State

PlReapState =

 acnt ∈ Acnt accounting
dstate ∈ DState delegation state
pstate ∈ PState pool state


Pool Reap transitions

` −−−−−→
POOLREAP

∈ P (PlReapEnv× PlReapState× PlReapState)

Figure 29: Pool Reap Transition

The pool-reap transition rule is given in Figure 30. This transition has no preconditions and
results in the following state change:

• For each retiring pool, the refund for the pool registration deposit is added to the pool’s
registered reward account, provided the reward account is still registered.

• The sum of all the refunds attached to unregistered reward accounts are added to the
treasury.

• Any delegation to a retiring pool is removed.

• Each retiring pool is removed from all four maps in the pool state.

41

Pool-Reap

retired=retiring−1 enew
pr=poolRefunds pp retiring (firstSlot enew)

rewardAcnts={hk 7→ poolRAcnt pool | hk 7→ pool ∈ retired � poolParams}

refunds=

a 7→ c

∣∣∣∣∣
hk 7→ c ∈ pr,
hk 7→ a ∈ rewardAcnts,

a ∈ dom rewards


unclaimed= ∑

hk 7→c∈pr
hk 7→a∈rewardAcnts,

a/∈dom rewards

c

enew
pp `



treasury
reserves

rewardPot

stkeys
rewards

delegations
ptrs

stpools
poolParams

retiring
avgs



−−−−−→
POOLREAP



treasury + unclaimed
reserves

rewardPot

stkeys
rewards ∪+ refunds

delegations /� retired
ptrs

retired /� stpools
retired /� poolParams
retired /� retiring
retired /� avgs



(15)

Figure 30: Pool Reap Inference Rule

42

10.6 Protocol Parameter Update Transition

Finally, reaching the epoch boundary may trigger a change in the protocol parameters. The
protocol parameters environment consists of the upcoming epoch number, the new protocol
parameters, and delegation and pool states. The state change is a change of the UTxOState, the
Acnt states, and the current PParams. The type of this state transition is given in Figure 31.

New Proto Param environment

NewPParamEnv =


enew ∈ Epoch upcoming epoch

ppnew ∈ PParams new protocol parameters
dstate ∈ DState delegation state
pstate ∈ PState pool state


New Proto Param States

NewPParamState =

 utxoSt ∈ UTxOState utxo state
acnt ∈ Acnt accounting

pp ∈ PParams current protocol parameters


New Proto Param transitions

` −−−−→
NEWPP

⊆ P (NewPParamEnv×NewPParamState×NewPParamState)

Figure 31: New Proto Param transition-system types

Figure 32 defines the new protocol parameter transition. The transition has two rules,
depending on whether or not the new protocol parameters would incur a debt of the system that
could not be covered by the reserves. The transition has two rules, each with one precondition.
The preconditions are negations of each other, so that exactly one will always be met. This
transition results in the following state change:

• If the new protocol parameters mean that fewer funds are required in the deposit pot to
cover all possible refunds, then Rule 16 meets the precondition. The excess is moved to
the reserves and the protocol parameters are updated.

• If the new protocol parameters mean that more funds are required in the deposit pot to
cover all possible refunds, and the difference is less than the reserve pot, then Rule 16
meets the precondition. Funds are moved from the reserve pot to cover the difference and
the protocol parameters are updated.

• If the new protocol parameters mean that more funds are required in the deposit pot to
cover all possible refunds, and the difference is more than the reserve pot, then Rule 17
meets the precondition and no state changes.

Note that here, unlike most of the inference rules in this document, the utxoSt′ and the acnt′

do not come from valid UTxO or accounts transitions in the antecedent. We simply define the
consequent transition using these directly (instead of listing all the fields in both states in the
consequent transition). It is done this way here for ease of reading.

43

New-Proto-Param-Accepted

slot = firstSlot enew
oblgcur = obligation pp stkeys stpools slot
oblgnew = obligation ppnew stkeys stpools slot

diff = oblgcur − oblgnew

reserves + diff ≥ 0

utxoSt′ =

 utxo
oblgnew

fees

 acnt′ =


treasury

reserves + di f f
rewardPot

rewards


enew
ppnew
dstate
pstate

`

 utxoSt
acnt

pp

 −−−−→
NEWPP

 utxoSt′

acnt′

ppnew


(16)

New-Proto-Param-Denied

slot = firstSlot enew
oblgcur = obligation pp stkeys stpools slot
oblgnew = obligation ppnew stkeys stpools slot

diff = oblgcur − oblgnew

reserves + diff < 0

enew
ppnew
dstate
pstate

`

 utxoSt
acnt

pp

 −−−−→
NEWPP

 utxoSt
acnt

pp


(17)

Figure 32: New Proto Param Inference Rule

44

10.7 Complete Epoch Boundary Transition

Finally, it is possible to define the complete epoch boundary transition type, which is defined
in Figure 33. In the environment of this transition, we have the slot number, potentially new
protocol parameters, and the blocks made this epoch. The state is made up of the the UTxO
state, the accounting state, the delegation state, the pool state, the current protocol parameters,
and the snapshots.

Epoch environment

EpochEnv =

 enew ∈ Epoch upcoming epoch
ppnew ∈ PParams new protocol parameters
blocks ∈ BlocksMade blocks made in the epoch


Epoch States

EpochState =



utxoSt ∈ UTxOState utxo state
acnt ∈ Acnt accounting

dstate ∈ DState delegation state
pstate ∈ PState pool state

pp ∈ PParams current protocol parameters
ss ∈ Snapshots snapshots


Epoch transitions

` −−−→
EPOCH

⊆ P (EpochEnv× EpochState× EpochState)

Figure 33: Epoch transition-system types

The epoch transition rule calls SNAP, POOLREAP, and NEWPP in sequence.

45

Epoch

enew
pp
dstate
pstate
blocks

`
(

ss
utxoSt

)
−−−→

SNAP

(
ss′

utxoSt′

)

enew
pp `

 acnt
dstate
pstate

 −−−−−→
POOLREAP

 acnt′

dstate′

pstate′


enew
ppnew
dstate′

pstate′′
`

 utxoSt′

acnt′

pp

 −−−−→
NEWPP

 utxoSt′′

acnt′′

pp′



enew
ppnew
blocks

`



utxoSt
acnt

dstate
pstate

pp
ss

 −−−→EPOCH



utxoSt′′

acnt′′

dstate′

pstate′

pp′

ss′



(18)

Figure 34: Epoch Inference Rule

46

10.8 Rewards Distribution Calculation

This section defines the reward calculation for the proof of stake leader election. Figure 35
defines the pool reward as described in section 6.5.1 of Kant et al. (2018).

• The function maxPool gives the maximum reward a stake pool can receive in an epoch.
This is a fraction of the total available rewards for the epoch. The result depends on the
pool’s relative stake, the pool’s pledge, and the following protocol parameters:

– a0, the leader-stake influence

– nopt, the optimal number of saturated stake pools

• The function movingAvg calculates the new moving average for a given stake pool based
on its performance and the protocol parameter:

– α, the moving average weight

• The function poolReward gives the total rewards available to be distributed to the members
of the given pool. It depends on one additional protocol parameter:

– γ, the moving average exponent

47

Maximal Reward Function, called f (s, σ) in section 6.5.1 of Kant et al. (2018)

maxPool ∈ PParams→ Coin→ [0, 1]→ [0, 1]→ Coin

maxPool pp R σ pr =

⌊
R

1 + a0
·
(

σ′ + p′ · a0 ·
σ′ − p′ z0−σ′

z0

z0

)⌋
where

a0 = influence pp
nopt = nopt pp
z0 = 1/nopt

σ′ = min(σ, z0)

p′ = min(pr, z0)

Exponential moving average, called 〈x〉e in 6.5.1 of Kant et al. (2018)

movingAvg ∈ PParams→ HashKey→N→ R≥0 → Avgs→ R

movingAvg pp hk n N avgs =


n

max(N,1)
hk /∈ dom avgs

α · n
max(N,1)

+ (1− α) · prev hk 7→ prev ∈ avgs

where
α = movingAvgWeight pp

Actual Reward Function, called f̂ j in section 6.5.1 of Kant et al. (2018)

poolReward ∈ PParams→ HashKey→N→ R≥0 → Avgs→ Coin→ Coin

poolReward pp hk n N avgs maxP = bavgγ ·maxPc
where

γ = movingAvgExp pp

avg = movingAvg pp hk n N avgs

Figure 35: Functions used in the Reward Calculation

48

Figure 36 gives the calculation for splitting the pool rewards with its members, as described
6.5.2 of Kant et al. (2018). The portion of rewards allocated to the pool operator and owners is
different than that of the members.

• The rleader function calculates the leader reward, based on the pool cost, margin, and
proportion of the pool’s total stake. Note that this reward will go to the reward account
specified in the pool registration certificate.

• The rmember function calculates the member reward, proportionally to their stake after the
cost and margin are removed.

Pool leader reward, from section 6.5.2 of Kant et al. (2018)

rleader ∈ Coin→ PoolParam→ [0, 1]→ (0, 1]→ Coin

rleader f̂ pool s σ =

{
f̂ f̂ ≤ c

c +
⌊
(f̂ − c) ·

(
m + (1−m) · s

σ

)⌋
otherwise.

where
c = poolCost pool
m = poolMargin pool

Pool member reward, from section 6.5.2 of Kant et al. (2018)

rmember ∈ Coin→ PoolParam→ [0, 1]→ (0, 1]→ Coin

rmember f̂ pool t σ =

{
0 f̂ ≤ c⌊
(f̂ − c) · (1−m) · t

σ

⌋
otherwise.

where
c = poolCost pool
m = poolMargin pool

Figure 36: Functions used in the Reward Splitting

Finally, the full reward calculation is presented in Figure 37. The calculation is done pool-by-
pool.

• The rewardOnePool function calculates the rewards given out to each member of a given
pool. The pool leader is identified by the stake key of the pool operator. The function
returns both the rewards and the total amount of unrealized potential rewards (ie the
difference beween the max reward R and what was actually paid out). The unrealized
amount will go to the treasury. Note that rewards attached to unregistered reward accounts
will end up in the unrealized amount. Involved in the calculation is:

– pstake, the total amount of stake controlled by the stake pool.

– ostake, the total amount of stake controlled by the stake pool operator and owners

– σ, the total proportion of stake controlled by the stake pool.

– N, the expected number of blocks the pool should have produced.

– pledge, the pool’s pledge in lovelace.

49

– pr, the pool’s pledge, as a proportion of active stake.

– maxP, maximum rewards the pool can claim if the pledge is met, and zero otherwise.

– poolR, the pool’s actual reward, based on its performance.

– mRewards, the member’s rewards as a mapping of reward accouts to coin.

– lReward, the leader’s reward as coin.

– potentialRewards, the combination of mRewards and lRewards.

– rewards, the restriction of potentialRewards to the active reward accounts.

– unrealized, difference between R (max rewards) and the sum of all individual rewards
paid out.

• The reward function applies rewardOnePool to each registered stake pool, calculating both
the full reward mapping and the total unrealized rewards value.

50

Calculation to reward a single stake pool

rewardOnePool ∈ PParams→ Coin→N→ HashKey→ PoolParam

→ Stake→ Avgs→ Coin→ P Addrrwd → (Addrrwd 7→ Coin)× Coin

rewardOnePool pp R n poolHK pool stake avgs tot addrsrew = (rewards, unrealized)
where

pstake = ∑
7→c∈stake

c

ostake = ∑
hk 7→c∈stake

hk∈(poolOwners pool)

c

σ = pstake/tot

N = σ ∗ SlotsPerEpoch

pledge = poolPledge pool
pr = pledge/tot

maxP =

{
maxPool pp R σ pr pledge ≤ ostake
0 otherwise.

poolR = poolReward pp hk n N avgs maxP

mRewards =
{

addrrwd hk 7→ rmember poolR pool
c

tot
σ
∣∣∣ hk 7→ c ∈ stake, hk 6= poolHK

}
lReward = rleader poolR pool

ostake
tot

σ

potentialRewards = mReward∪ {(poolRAcnt pool) 7→ lReward}
rewards = addrsrew � potentialRewards

unrealized = R−
(

∑
7→c∈rewards

c

)

Calculation to reward all stake pools

reward ∈ PParams→ BlocksMade→ Coin→ P Addrrwd → (HashKey 7→ PoolParam)

→ Avgs→ Stake→ (HashKeystake 7→ HashKeypool)→ (Addrrwd 7→ Coin)× Coin

reward pp blocks R addrsrew poolParams avgs stake delegs = (rewards, unrealized)
where

tot = ∑
7→c∈stake

c

pdata =

{
hk 7→ (p, n, poolStake hk delegs stake)

∣∣∣∣∣ hk 7→p ∈ poolParams
hk 7→n ∈ blocks

}
results = {hk 7→ rewardOnePool pp R n hk p s avgs tot addrsrew | hk 7→ (p, n, s) ∈ pdata}
unrealized = ∑

7→(, u)∈results
u

rewards =
⋃

7→(r,)∈results

r

Figure 37: The Reward Calculation

51

10.9 Reward Transition

Figure 38 gives the definitions for the reward transition. The figure lists the accounting fields,
denoted by Acnt, which consists of:

• The value treasury tracks the amount of coin currently stored in the treasury. Initially there
will be no way to remove these funds.

• The value reserves tracks the amount of coin currently stored in the reserves. This pot is
used to pay rewards.

• The value rewardPot to tracks the rewards from the previous epoch that were not payed
out.

The figure also defines the reward environment, RewardEnv, and the reward state, RewardState,
which combines the accounting fields described above with the UTxO State, the delegation state,
and the pool state. The reward state transition type, like all the transition types in this section,
has no signal.

Accounting Fields

Acnt =

 treasury ∈ Coin treasury pot
reserves ∈ Coin reserve pot

rewardPot ∈ Coin reward pot


Rewards environment

RewardEnv =

 pp ∈ PParams protocol parameters
blocks ∈ BlocksMade blocks made in the epoch

ss ∈ SnapshotState snapshots


Rewards States

RewardState =


acnt ∈ Acnt accounting

dstate ∈ DState delegation state
pstate ∈ PState pool state

utxoSt ∈ UTxOState utxo state


Rewards transitions

` −−−−→
REWARD

⊆ P (RewardEnv× RewardState× RewardState)

Figure 38: Rewards transition-system types

52

Figure 39 captures the potential movement of funds in the entire system, taking every
transition system in this document into account. Value is moved between accounting pots,
but the total amount of value in the system remains constant. In particular, the red subgraph
represents the inputs and outputs to the “total pot” used during the reward calculation in
Figure 40. The blue arrows represent the movement of funds that pass through the “total pot”.

Circulation

Reserves

Deposits

Fees/Reward pot

Reward accounts

Treasury

Total pot

Figure 39: Preservation of Value

Figure 40 defines the reward transition rule. The reward transition has no preconditions.

• First we calculate totalPot, the total amount of coin avail for rewards this epoch, , as
described in section 6.4 of Kant et al. (2018). It consists of four pots:

– The fee pot, containing the transaction fees from the epoch.

– The amount of coin in the deposit pot that is no longer needed, due to decay.

– The reward pot, which is the left-over rewards from the previous epoch.

– Some amount of monetary expansion from the reserves, as determined by the ρ
protocol parameter.

Note that the fee pot and the decayed amount are taken from the snapshot taken at the
epoch boundary. (See Figure28).

• Some proportion of the total pot is moved to the treasury, as determined by the τ protocol
parameter. The remaining pot is called the R, just as in section 6.5 of Kant et al. (2018).

• The rewards are calculated, using the oldest stake distribution snapshot (the one labeled
“go”). As given by maxPool, each pool can receive a maximal amount, determined by its
performance. The difference between the maximal amount and the actual amount received
is moved to the treasury.

• The reward pot is now set to R less the total amount of rewards actually paid out and the
unrealized rewards given to the treasury.

• The moving averages are updated. Note the averages were already computed on the
previous epoch boundary, as a part of the stake distribution calculation, and could therefore
be cached in order to prevent calculating them twice.

• The fee pot is reduced by feeSS.

53

Note that fees are not explicitly removed from any account: the fees come from transactions
paying them, and are accounted for whenever transactions are processed, and the deposit decay
value comes from returning smaller refunds for deposits than were paid upon depositing.

54

Rewards


pstatego
poolsSS
blocksSS

feeSS

=ss

(stake, delegs)=pstatego
expansion=b(rho pp) · reservesc

totalPot=feeSS + rewardPot + expansion
newTreasury=b(tau pp) · totalPotc

R=totalPot− newTreasury
rewards′, unrealized=reward pp blocksSS R (dom rewards) poolsSS avgs stake delegs

newTreasury′=newTreasury + unrealized

paidRewards=
(

∑
7→c∈rewards′

c
)
+ unrealized

avgs′=updateAvgs pp avgs blocks delegs stake

pp
blocks
ss

`



treasury
reserves

rewardPot

stkeys
rewards

delegations
ptrs

stpools
poolParams

retiring
avgs

utxo
deposits

fees



−−−−→
REWARD



treasury + newTreasury′

reserves − expansion
R − paidRewards

stkeys
rewards ∪+ rewards′

delegations
ptrs

stpools
poolParams

retiring
avgs′

utxo
deposits

f ees − f eeSS


(19)

Figure 40: Rewards inference rules

55

11 Properties

In this section we discuss the properties which we want the ledger to have. One goal is to
include these properties in the executable specification for doing property-based testing or
formal verification.

11.1 Validity of a Ledger State

Many properties only make sense when applied to a valid ledger state. In informal terms, a valid
ledger state l can only be reached when starting from an initial state l0 (genesis state) and only
executing state transition rules as specified in Section 7 for UTxO or Section 8 for delegation.

GenesisId ∈ TxId

GenesisOut ∈ TxOut

GenesisUTxO := {GenesisId, ∅} 7→ GenesisOut

ledgerState ∈
(

UTxO
DPState

)

getUTxO ∈ ledgerState→ UTxO

getUTxO := (utxo,)→ utxo

Figure 41: Definitions and Functions for Valid Ledger State

In Figure 41 GenesisId marks the transaction identifier of the initial coin distribution, where
GenesisOut represents the initial UTxO. It should be noted that no corresponding inputs exists,
i.e., the transaction inputs are the empty set for the initial transaction. An element of ledgerState
is a tuple of UTxO and delegation witness state (DPState).

Definition 11.1 (Valid Ledger State).

∀l0, . . . , ln ∈ ledgerState, l0 =

 {GenesisUTxO}(
∅
∅

) 
=⇒ ∀0 < i ≤ n, (∃txi ∈ Tx, li−1

txi−−−−→
LEDGER

li) =⇒ validLedgerState ln

Definition 11.1 defines a valid ledger state reachable from the genesis state via valid UTxO,
stake delegation or stake pool transactions. This gives a constructive rule how to reach a valid
ledger state.

11.2 Ledger Properties

The following properties state the desired features of updating a valid ledger state.

Property 11.1 (Preserve Balance Modulo Fee).

∀l, l′ ∈ ledgerState : validLedgerstate l

=⇒ ∀tx ∈ Tx, l tx−−−−→
UTXOW

l′

=⇒ destroyed pcutxostKeysrewardstx = created pcstPoolstx

56

Property 11.1 states that for each valid ledger l, if a transaction tx is added to the ledger via
the state transition rule utxow to the new ledger state l′, the balance of the UTxOs in l equals
the balance of the UTxOs in l′ in the sense that the amount of created value in l′ equals the
amount of destroyed value in l. This means that the total amount of value is left unchanged by
a transaction.

Property 11.2 (Preserve Balance Restricted to TxIns in Balance of TxOuts).

∀l, l′ ∈ ledgerState : validLedgerstate l

=⇒ ∀tx ∈ Tx, l tx−−−−→
UTXOW

l′ =⇒ ubalance(txins tx � getUTxO l) = ubalance(outs tx) + txfee tx

Property 11.2 states the more detailed relation of the balances change. For ledgers l, l′ and a
transaction tx as above, the balance of the UTxOs of l restricted to those whose domain is in
the set of transaction inputs of tx equals the balance of the transaction outputs of tx minus the
transaction fees.

Property 11.3 (Preserve Outputs of Transaction).

∀l, l′ ∈ ledgerState : validLedgerstate l

=⇒ ∀tx ∈ Tx, l tx−−−−→
UTXOW

l′ =⇒ ∀out ∈ outs tx, out ∈ getUTxO l′

Property 11.3 states that for every ledger states l, l′ and transaction tx as above, all output
UTxOs of tx are in the UTxO set of l′, i.e., they are now available as unspent transaction output.

Property 11.4 (Eliminate Inputs of Transaction).

∀l, l′ ∈ ledgerState : validLedgerstate l

=⇒ ∀tx ∈ Tx, l tx−−−−→
UTXOW

l′ =⇒ ∀in ∈ txins tx, in 6∈ dom(getUTxO l′)

Property 11.4 states that for every ledger states l, l′ and transaction tx as above, all transaction
inputs in of tx are not in the domain of the UTxO set of l′, i.e., these are no longer available to
spend.

Property 11.5 (Completeness and Collision-Freeness of new Transaction Ids).

∀l, l′ ∈ ledgerState : validLedgerstate l

=⇒ ∀tx ∈ Tx, l tx−−−−→
UTXOW

l′ =⇒ ∀utxo′ ∈ outs tx, utxo′ ∈ getUTxO l′∧

(utxo′ = ((txId′,) 7→) =⇒ ∀utxo ∈ getUTxO l, utxo = ((txId,) 7→) =⇒ txId′ 6= txId

Property 11.5 states that for ledger states l, l′ and a transaction tx as above, the UTxOs of l′

contain all newly created UTxOs and the referred transaction id of each new UTxO is not used
in the UTxO set of l.

57

Property 11.6 (Absence of Double-Spend).

∀l0, . . . , ln ∈ ledgerState, l0 =

 {GenesisUTxO}(
∅
∅

)  ∧ validLedgerState ln

=⇒ ∀0 < i ≤ n, txi ∈ Tx, li−1
txi−−−−→

LEDGER
li ∧ validLedgerState li

=⇒ ∀j < i, txins txj ∩ txins txi = ∅

Property 11.6 states that for each valid ledger state ln reachable from the genesis state, each
transaction ti does not share any input with any previous transaction tj. This means that each
output of a transition is spent at most once.

11.3 Ledger State Properties for Delegation Transitions

getStKeys ∈ ledgerState→ P HashKey

getStKeys := (, (stKeys, ,),)→ stkeys

getRewards ∈ ledgerState→ Addrrwd 7→ Coin

getRewards := (, (, rewards,),)→ rewards

getDelegations ∈ ledgerState→ HashKey 7→ HashKey

getDelegations := (, (, , delegations),)→ delegations

getStPools ∈ ledgerState→ HashKey 7→ DCertregpool

getStPools := (, , (stpools,))→ stpools

getRetiring ∈ ledgerState→ HashKey 7→ Epoch

getRetiring := (, , (, retiring))→ retiring

Figure 42: Definitions and Functions for Stake Delegation in Ledger States

Property 11.7 (Registered Staking Key with Zero Rewards).

∀l, l′ ∈ ledgerState : validLedgerstate l

=⇒ ∀c ∈ DCertregkey, l c−−−−→
DELEGW

l′ =⇒ author c = hk

=⇒ hk ∈ getStKeys l′ ∧ (getRewards varrewards)[hk] = 0

Property 11.7 states that for each valid ledger state l, if a delegation transaction of type
DCertregkey is executed, then in the resulting ledger state l′, the set of staking keys of l′ includes
the key hk associated with the key registration certificate and the associated reward is set to 0 in
l′.

58

Property 11.8 (Deregistered Staking Key).

∀l, l′ ∈ ledgerState : validLedgerstate l

=⇒ ∀c ∈ DCertderegkey, l c−−−−→
DELEGW

l′ =⇒ author c = hk

=⇒ hk 6∈ getStKeys l′ ∧ (dom(getRewards l′) ∪ dom(getDelegations l′)) ∩ {hk} = ∅

Property 11.8 states that for l, l′ as above but with a delegation transition of type DCertderegkey,
the staking key hk associated with the deregistration certificate is not in the set of staking keys
of l′ and is not in the domain of neither the rewards nor the delegation map of l′.

Property 11.9 (Delegated Stake).

∀l, l′ ∈ ledgerState : validLedgerstate l

=⇒ ∀c ∈ DCertdelegate, l c−−−−→
DELEGW

l′ =⇒ author c = hk

=⇒ hk ∈ getStKeys l∧ (getDelegations l′)[hk] = pool c

Property 11.9 states that for l, l′ as above but with a delegation transition of type DCertdelegate,
the staking key hk associated with the deregistration certificate is in the set of staking keys of l
and delegates to the staking pool associated with the delegation certificate in l′.

11.4 Ledger State Properties for Staking Pool Transitions

Property 11.10 (Registered Staking Pool).

∀l, l′ ∈ ledgerState : validLedgerstate l

=⇒ ∀c ∈ DCertregpool, l c−−−→
POOL

l′ =⇒ author c = hk

=⇒ (getStPools l′)[hk] = c ∧ hk 6∈ getRetiring l′

Property 11.10 states that for l, l′ as above but with a delegation transition of type DCertregpool,
the key hk is associated with the author of the pool registration certificate in stpools of l′ and that
hk is not in the set of retiring stake pools in l′.

Property 11.11 (Start Staking Pool Retirement).

∀l, l′ ∈ ledgerState, cepoch ∈ Epoch : validLedgerstate l

=⇒ ∀c ∈ DCertretirepool, l c−−−→
POOL

l′

=⇒ e = retire c∧ cepoch < e < cepoch + Emax ∧ author c = hk
=⇒ (getRetiring l′)[hk] = e ∧ hk ∈ dom(getStPools l)

Property 11.11 states that for l, l′ as above but with a delegation transition of type DCertretirepool,
the key hk is associated with the author of the pool registration certificate in stpools of l′ and that
hk is not in the set of retiring stake pools in l′.

59

Property 11.12 (Stake Pool Reaping).

∀l, l′ ∈ ledgerState, cepoch ∈ Epoch : validLedgerstate l

=⇒ l −−−−−→
POOLREAP

l′ =⇒ ∀retire = retiring−1cepoch, retired 6= ∅

∧ retire ⊆ dom(getStPool l) ∧ retire∩ dom(getStPool l′) = ∅
∧ retire ⊆ dom(getRetiring l) ∧ retire∩ dom(getRetiring l′) = ∅

Property 11.12 states that for l, l′ as above but with a delegation transition of type poolreap,
there exist registered stake pools in l which are associated to stake pool registration certificates
and which are to be retired at the current epoch cepoch. In l′ all those stake pools are removed
from the maps stpools and retiring.

11.5 Properties of Numerical Calculations

The numerical calculations for refunds and rewards calculation in (see Section 10) are also
required to have certain properties. In particular we need to make sure that the functions
that use non-integral arithmetic have properties which guarantee consistency of the system.
Here, we state those properties and formulate them in a way that makes them possible to use
properties-based testing for validation in the executable spec.

Property 11.13 (Minimal Refund). The function refund takes a value, a minimal percentage, a
decay parameter and a duration. It must guarantee that the refunded amount is within the
minimal refund (off-by-one for rounding / floor) and the original value.

∀dval ∈N, dmin ∈ [0, 1], λ ∈ (0, ∞), δ ∈N

=⇒ max(0, dval · dmin − 1) ≤
⌊

dval · (dmin + (1− dmin) · e−λ·δ)
⌋
≤ dval

Property 11.14 (Exponential Moving Average). The function movingAvg calculates the exponen-
tial moving average, dividing the number of blocks created by the pool by the expected number
of slots the pool is elected leader (or 1 if the expected number is below 1). It guarantees that the
result is (i) non-negative and (ii) if a previous moving average has already been calculated, the
new moving average lies between the minimum and maximum of the old and new calculated
value. With current := n

max(N,1)
this is trivial for (i), for (ii) it is

∀α ∈ [0, 1], n ∈N, N ∈ R≥0, prev ∈ R≥0

=⇒ 0 ≤ min(prev, current) ≤ α · current + (1− α) · prev ≤ max(prev, current)

Property 11.15 (Maximal Pool Reward). The maximal pool reward is the expected maximal
reward paid to a stake pool. The sum of all these rewards cannot exceed the total available
reward, let Pool be the set of active stake pools:

∀R ∈ Coin : ∑
p∈Pools

 R
1 + pa0

·

pσ′ + pp′ ·a0 ·
pσ′ − pp′ ·

pz0−pσ′
pz0

pz0

 ≤ R

Property 11.16 (Actual Reward). The actual reward for a stake pool in an epoch is calculated by
the function poolReward. The actual reward per stake pool is non-negative and bounded by the

60

maximal reward for the stake pool, with avg being the calculated moving average of the stake
pool and maxP being the maximal reward for the stake pool, we get:

∀γ ∈ [0, 1] =⇒ 0 ≤ bavgγ ·maxPc ≤ maxP

The property (11.16) requires that avg ∈ [0, 1], else the actual reward can exceed the
maximal reward. This is not true, we need to take into account the rewards for all stake
pools.

TODO

The two functions rleader and rmember are closely related as they do split the reward between
the pool leader and the members.

Property 11.17 (Reward Splitting). The reward splitting is done via rleader and rmember, i.e., a
split between the pool leader and the pool members using the pool cost c and the pool margin
m. Therefore the property relates the total reward f̂ to the split rewards in the following way:

∀m ∈ [0, 1], c ∈ Coin =⇒ c+
⌊
(f̂ − c) · (m + (1−m)) · s

σ

⌋
+∑

j

⌊
(f̂ − c) · (1−m) ·

tj

σ

⌋
≤ f̂

Property 11.18 (Accounting transition). The ACCNT transition rule has the following properties
in order to ensure non-negative values:

• obl ≤ deposits

• ∀ρ ∈ [0, 1] : expansion = bρ · reservesc ≤ reserves

• ∀τ ∈ [0, 1] : newTreasury = bτ · totalPoolc ≤ totalPool

• totalPool − newTreasury− paidRewards ≥ 0

where paidRewards is the sum of rewards paid to the stake pool members.

61

12 Non-Integral Calculations

In the ledger there are several cases where non-integral calculations are required. This does
concern the delegation transitions, not value transactions.

12.1 Types of Non-Integral Calculations

The specification employs non-integral calculations for different mathematical operations. Ta-
ble 1 shows the function and transition rules that use non-integral calculations and which
type.

name page multiplication division exponential function exponentiation

refund 18 X X
maxPool 48 X X
movingAvg 48 X X
poolReward 48 X X X
rleader 49 X X
rmember 49 X X
rewardOnePool 51 X X
updateAvgs 36 X X
REWARD 55 X

Table 1: Functions with Non-Integral Calculation

The transcendental exponential function is used in reward and refund calculation to model
the decay of the deposit values. The pool reward uses exponentiation to calculate a pool’s
ranking.

The domain for the exponential function are the non-negative reals, more precisely the
distribution parameter λ ∈ (0, ∞) multiplied by a discrete non-negative duration δ.

The domain of the base of the exponentiation in poolReward are the non-negative reals
resulting from the calculation in movingAvg, the exponent γ is a constant take from the protocol
parameters.

12.2 Implementation of Non-Integer Calculations

The large part consists of multiplication and division which can easily be done using fractional
arithmetic to the desired precision. The precision necessary is bounded by the ability to represent
a single lovelace in all calculations.

12.2.1 Function Simplification

The transcendental function ex can be approximated using different approaches, depending on

the desired accuracy. In general, one uses the exponential laws ex = 1/e−x and ex =
(

e
x
n

)n
, n ∈

N to reduce the approximation to the unit interval and apply fast integral exponentiation
afterwards.

Exponentiation is implemented using the law ab = eln(ab) = eb ln(a). This therefore requires
being able to calculate ex and ln(x). The approximation of the natural logarithm can be approx-
imated using different approaches, again, depending on the desired accuracy. Most approxi-
mations work for ln(x), x ∈ [1, c) with some c > 0. One then uses the law logb(x) = logb(

x
bn bn)

where n ∈N is chosen in such a way that x
bn ∈ [1, c). Using this, one can separate the calculation

of the integral and decimal part as follows:

62

logb(
x
bn bn) = logb(b

n) + logb(
x
bn) = n + log(

x
bn)

12.2.2 Properties of Function Approximation

There are several properties that approximations of the transcendental functions are expected to
have. In the following let ln′(x) be the approximation of ln(x), exp′(x) be the approximation of
ex and x ? y the approximation of xy.

Property 12.1 (monotonicity). Both exp′ and ln′ must be monotone on their respective domains.

In order to guarantee correctness of the approximations, we also require that the mathemati-
cal laws are fulfilled. For some small ε > 0, define x ≈ y⇔ |x− y| < ε.

Property 12.2 (Mathematical Laws). The following mathematical laws state the requirements
for the approximations of the ln′ and exp′ function:

• ln′(x · y) ≈ ln′(x) + ln′(y)

• ln′(xy) ≈ y · ln′(x)

• ln′(exp′(x)) ≈ exp′(ln′(x)) ≈ x

• x, y ∈ [0, 1] =⇒ x ? y ∈ [0, 1]

• x, y, z ∈ [0, 1], x > 0 =⇒ (z ? 1
x) ? y ≈ (z ? y) ? 1

x

• exp′(x + y) = exp′(x) + exp′(y)

63

A Proofs

For the proofs we use the automated theorem prover MetiTarski Akbarpour and Paulson (2010)
which is specialized for proofs over real arithmetic, including elementary functions.

Proof. The property (11.13) (p. 60) for the minimal refund can be proven automatically via

fof(minimal_refund, conjecture,

! [Dmin, Lambda, Delta, Dval] :

((Dmin : (=0,1=) & Lambda > 0 & Delta > 0 & Dval > 0

=>

Dval*Dmin >= 0 &

(Dval * (Dmin + (1 - Dmin) * exp(-Lambda * Delta))) : (=Dval * Dmin, Dval=)))).

fof(floor_lower_upper, conjecture,

! [X] :

(X >= 0 => X - 1 <= floor(X) & floor(X) <= X)).

minimal_refund shows that the resulting value is within the interval [dval · dmin, dval] and that
dval · dmin is non-negative, while floor_lower_upper shows that the floor of a value x has an
upper bound x and lower bound x− 1.

Proof. The property (11.14) (p. 60) for the bounded moving average can be proven automatically
via

fof(simple_moving_average, conjecture,

! [Alpha, Prev, N, Nexpected] :

(Alpha : (=0, 1=) & N >= 0 & Nexpected >= 0 & Prev >= 0

=>

0 <= N/max(Nexpected, 1) &

N/max(Nexpected, 1) <= N &

Alpha*N/max(Nexpected, 1) + (1 - Alpha) * Prev <= max(Prev, N/max(Nexpected, 1)) &

min(Prev, N/max(Nexpected, 1)) <= Alpha*N/max(Nexpected, 1) + (1 - Alpha) * Prev)).

Proof. For the property (11.17) (p. 61) for reward splitting between we actually show a stronger
one, by removing the floor function. Using the fractional values we get an upper bound for the
real value, and showing that this upper bound is bounded by f̂ we show that the real value is
also bounded by f̂ . To eliminate the sum, we use the identity

s+∑j tj
σ = 1, see the definition of σ

in Kant et al. (2018). Using this, we show for f̂ > c

0 ≤ c + (f̂ − c) · (m + (1−m)) · s
σ
+ ∑

j
(f̂ − c) · (1−m) ·

tj

σ
≤ f̂

⇔ 0 ≤ c + (f̂ − c) ·m · s
σ
+ (f̂ − c) · (1−m) ·

s + ∑j tj

σ
≤ f̂

⇔ 0 ≤ c + (f̂ − c) ·m · s
σ
+ (f̂ − c) · (1−m) ≤ f̂

This can be proven automatically using

64

fof(reward_splitting, conjecture,

! [C, F, M, S, Sigma] :

(

M : (=0, 1=) & C >= 0 & F > C & Sigma : (0, 1=) & S : (=0, Sigma=)

=>

C + (F - C) * M * S / Sigma + (F - C) * (1 - M) <= F &

0 <= C + (F - C) * M * S / Sigma + (F - C) * (1 - M))).

References

Behzad Akbarpour and Lawrence C. Paulson. Metitarski: An automatic theorem prover
for real-valued special functions. J. Autom. Reasoning, 44(3):175–205, 2010. doi: 10.1007/
s10817-009-9149-2. URL https://doi.org/10.1007/s10817-009-9149-2.

IOHK Formal Methods Team. Small step semantics for cardano, 2018. URL
https://github.com/input-output-hk/cardano-chain/blob/master/specs/semantics/

latex/small-step-semantics.tex.

IOHK Formal Methods Team. ?? - shelley consensus. TODO.

Philipp Kant, Lars Brünjes, and Duncan Coutts. Design specification for delegation and in-
centives in cardano, 2018. URL https://github.com/input-output-hk/fm-ledger-rules/

tree/master/docs/delegation_design_spec.

Joachim Zahnentferner. Chimeric ledgers: Translating and unifying utxo-based and account-
based cryptocurrencies. Cryptology ePrint Archive, Report 2018/262, 2018. URL https://

eprint.iacr.org/2018/262.

65

https://doi.org/10.1007/s10817-009-9149-2
https://github.com/input-output-hk/cardano-chain/blob/master/specs/semantics/latex/small-step-semantics.tex
https://github.com/input-output-hk/cardano-chain/blob/master/specs/semantics/latex/small-step-semantics.tex
https://github.com/input-output-hk/fm-ledger-rules/tree/master/docs/delegation_design_spec
https://github.com/input-output-hk/fm-ledger-rules/tree/master/docs/delegation_design_spec
https://eprint.iacr.org/2018/262
https://eprint.iacr.org/2018/262

	Introduction
	Notation
	Cryptographic primitives
	Addresses
	Protocol Parameters
	Transactions
	UTxO
	UTxO Transitions
	Deposits and Refunds
	Witnesses

	Delegation
	Delegation Definitions
	Delegation Transitions
	Delegation Rules
	Stake Pool Rules
	Delegation and Pool Combined Rules

	Ledger State Transition
	Rewards and the Epoch Boundary
	Overview of the Reward Calculation
	Helper Functions
	Stake Distribution Calculation
	Snapshot Transition
	Pool Reaping Transition
	Protocol Parameter Update Transition
	Complete Epoch Boundary Transition
	Rewards Distribution Calculation
	Reward Transition

	Properties
	Validity of a Ledger State
	Ledger Properties
	Ledger State Properties for Delegation Transitions
	Ledger State Properties for Staking Pool Transitions
	Properties of Numerical Calculations

	Non-Integral Calculations
	Types of Non-Integral Calculations
	Implementation of Non-Integer Calculations
	Function Simplification
	Properties of Function Approximation

	Proofs
	References

